Virial Coefficients of Ethane from a Quadrupolar Site-Site Potential Function

Kenneth O. Monago and Charles Otobrise

Department of Pure and Industrial Chemistry, University of Port-Harcourt, Port-Harcourt, Nigeria.

Department of Chemistry, Delta State University, Abraka, Nigeria.

E-mail: otobrisec@delsu.edu.ng

ABSTRACT

A procedure based on a site-site pair potential function, combined with the triple-dipole term, was used to determine the second and third virial coefficients of linear ethane. The parameters in the two-body potential were determined in a fit to experimental second acoustic virial coefficients; no other data were used. The three-body strength coefficient was determined in a fit to speed-of-sound data using isotropic two-body and three-body potentials. The resulting potential parameters reproduced second acoustic virial coefficients and predicted second volumetric virial coefficients of ethane to within an absolute error of 0.5 cm3 mol$^{-1}$. The third volumetric virial coefficients were predicted to within an absolute error of 250 cm6 mol$^{-2}$. Third acoustic virial coefficients of ethane predicted with the procedure are in good agreement with experiment only at temperatures above about 240 K; below this temperature the two sets of values are inconsistent.

Keywords: Linear ethane, Virial coefficients, Site-site potential, Triple-dipole term, Quadrupole moment.

Received: 23.05.16. Accepted: 10.08.16

1. INTRODUCTION

Following the enumeration and computation of three-body graphs in the fourth virial coefficient, it is now known that a fourth-order virial equation of state, far from being a low-density expansion can predict P-V-T properties of gases with high accuracy up to one-half the critical density, or in terms of pressure up to 12 MPa (Monago, 2005; Monago, 2013; Monago 2010, and Wiebke et al., 2011). At present, our only source of fourth virial coefficient is by computation, because it is difficult to extract its values from experimental volumetric data. The only experimental fourth virial coefficient data that are known to the author and of which there is corroborative evidence of their accuracy are those of Estrada-Alexanders (Estrada-Alexanders, 1996). For real molecular fluids, calculation of virial coefficients have been limited largely at the second virial coefficient level (Estrada-Alexanders, 1996; Ewing and Trusler, 1992; Estela-Uribe and Trusler, 2000, and Meng and Duaa, 2006); however, there are a few published works on third virial coefficient: Lucas and his co-workers used an anisotropic potential function to calculate the third virial coefficients of some linear molecules. Ameling and Lucas, (1986); Ameling et al., (1986) and Kusalik et al., (1995); have calculated the third virial coefficients of certain non-linear water models. Benjamin et al., (2009) and Shaul et al., (2011); have calculated virial coefficients up to the fifth order using Monte Carlo sampling methods. However, no experimental data exist with which to verify the accuracies of volumetric coefficients higher than the third; and it would appear that virial coefficients calculated by these methods are not yet sufficiently accurate. For example, second and third virial
coefficients calculated by Kim et al. (2013) for mixtures of methane and ethane disagreed with experiment by between 5 – 10 percent and 20 – 30 percent, respectively. Also, pressure calculated by Benjamin et al. (2009) using virial coefficients up to the fifth order was deemed accurate only up to $\rho/2$.

The purpose of this paper is to use a site-site pair potential function with a point quadrupole to calculate the first two virial coefficients and their first two temperature derivatives of molecular ethane and to compare the results obtained here with experimental data.

2. THEORETICAL FRAMEWORK

The relationship between an angle-dependent potential function and second volumetric virial coefficient, B, is:

$$ B = -\frac{NA}{4} \int_{0}^{\infty} r_{12}^{2} dr_{12} \int_{-1}^{1} d(\cos \theta_{1}) \int_{-1}^{1} d(\cos \theta_{2}) \int_{0}^{2\pi} f_{12} d\varphi_{12} $$

The analogous expression for third volumetric virial coefficient, C, is:

$$ C = -\frac{NA^{2}}{24\pi} \int_{0}^{\infty} r_{12}^{2} dr_{12} \int_{0}^{\infty} r_{13}^{2} dr_{13} \int_{-1}^{1} d(\cos \alpha) \int_{(\theta)} f_{(\theta)} f_{12} f_{13} f_{23} \int_{(\varphi)} (e_{12} e_{13} e_{23} f_{123}) d\theta d\phi $$

Where,

$$ \int_{(\theta)} = \int_{-1}^{1} d(\cos \theta_{1}) \int_{-1}^{1} d(\cos \theta_{2}) \int_{-1}^{1} d(\cos \theta_{3}), \int_{(\varphi)} = \int_{0}^{2\pi} d\varphi_{1} \int_{0}^{2\pi} d\varphi_{2} \int_{0}^{2\pi} d\varphi_{3} $$

$$ \cos \alpha = r_{12} \cdot r_{13} / r_{12} r_{13} $$

The other symbols have their usual meanings. Eq. (1) and (2) are written in the space-fixed reference frame and the notations in the above expressions follow those used by Lucas (1991). The systems we consider in this article are composed of symmetric linear molecules between which there exist both pairwise as well as non-additive three-body forces. These forces can be specified by a pair potential function, $\phi(r_{12}, \omega_{1}, \omega_{2})$ and triplet potential function $\Delta \phi_{123}$. In this work, pairwise forces are modeled by the two-center Maitland-Smith potential function with a point quadrupole.

$$ \varnothing(r_{12}, \omega_{1}, \omega_{2}) = \frac{1}{4} \sum_{j=1}^{2} \Sigma_{i=1}^{2} \frac{r_{ij}}{n-6} \left(\frac{r_{m}}{r_{ij}} \right)^{n} - n \left(\frac{r_{m}}{r_{ij}} \right)^{6} + \varnothing_{QQ} $$

Where, $n = m + \tau \left(\frac{\tau}{\sigma} - 1 \right)$, and

$$ \varnothing_{QQ} = \frac{3 \omega^{2}}{4 r_{13}^{2}} \left[1 - 5(c_{1}^{2} + c_{2}^{2} + 3c_{1}^{2} c_{2}^{2}) + 2(s_{1} s_{2} c_{12} - 4 c_{1} c_{2}^{2}) \right] $$

In the above scheme, ω denotes the orientation angle of molecules, $C_{i} = \cos \theta_{i}, S_{i} = \sin \theta_{i}, r_{ij}$ is the distance between site i in one molecule and site j in another and r_{12} is the center-to-center distance between two molecules; also, \varnothing is the quadrupole moment of ethane. For the system under consideration, r_{12} and r_{ij} are related by Eq. (5) (Lucas, 1991).

$$ r_{ij}^{2} = r_{12}^{2} + l_{1}^{2} + l_{2}^{2} - 2r_{12} [(\pm l_{1}) c_{1} - (\pm l_{2}) c_{2}] - 2(\pm l_{1})(\pm l_{2}) [c_{1} c_{2} + s_{1} s_{2} c_{12}] $$
Where, \(l_i \) is the distance of site \(i \) from the center of mass of the molecule and \(C_{12} = \cos \phi_{12} \). For the interactions between only two molecules, one may choose the center-to-center distance to lie along the z-axis in the space-fixed frame; therefore, Eq. (4) and (5) may be used with Eq. (1) without modification. However, for the interactions between three molecules, one must relate the general angles, \((\theta, \phi)\), to the angles in the intermolecular reference frame, \((\theta, \phi)\). Details of this transformation are given in (Ameling et al., 1986 and Lucas, 1991). Lucas (1991) in particular gives the relationships between the two sets of angles for the interactions between molecule 1 and 3. For those between molecules 1 and 2, the appropriate relationships are:

\[
\cos \theta = \sin \hat{\theta} \cos (\phi - \alpha)
\]

\[
\sin \varphi = \frac{\sin \theta \sin \hat{\phi} - \sin \alpha \cos \theta}{\cos \alpha \sin \theta}
\]

\[
\Delta \theta(r_{123}) = \frac{3 \delta_{125}}{8 (r_{12} r_{15} r_{25})^2} \left(\frac{1}{2} + \frac{r_{12}^2 + r_{15}^2 + r_{25}^2}{r_{15}^2} + \frac{r_{12}^2 + r_{15}^2 + r_{25}^2}{r_{25}^2} + \frac{r_{12}^2 + r_{15}^2 + r_{25}^2}{r_{15}^2} - \frac{r_{12}^6 + r_{15}^6 + r_{25}^6}{(r_{12} r_{15} r_{25})^2} \right)
\]

[6]

In Eq. (6), \(\delta_{123} \) is the three-body strength coefficient, which adds the fifth parameter to the overall model. Since we are here dealing with symmetric linear molecules, Eq. (2) was re-written as:

\[
C = -\frac{N_3}{12\pi} \int_0^{\infty} r_{12} d\tilde{r}_{12} \int_0^{\infty} r_{13} d\tilde{r}_{13} \int_0^{\tilde{r}_{13}} r_{23} d\tilde{r}_{23} \int_0^{\tilde{r}_{13}} (\theta (\tilde{r}_{12}, \tilde{r}_{13}, \tilde{r}_{23})) \left(f_{12} f_{13} f_{23} + e_{12} e_{13} e_{23} f_{123} \right) d\tilde{\theta} d\tilde{\phi}
\]

[7]

The first two temperature derivatives of \(B \) and \(C \) were obtained by ordinary differentiation of Eq. (1) and (7) (Monago, 2005).

3. NUMERICAL METHODS

The virial coefficients were calculated according to eq. (1) and (7), using multi-panel Gaussian quadrature. In the case of \(B \), the semi-infinite integration over \(r_{12} \) was performed as follows: first, the interval \((0, r_{\text{max}})\) was divided into three panels joined at \(r_{12} = 2\sigma \) and \(r_{\text{max}} = 20\sigma \). The first and second panels were further sub-divided into 6 and 12 equal partitions, respectively, and each partition was integrated over by a 5 point Gaussian quadrature. The last panel was integrated over analytically. In the case of \(C \), integration over \(r_{12} \) was performed as for \(B \), except that the interval \((0, r_{\text{max}})\) was divided into two panels jointed at \(r_{12} = 2\sigma \). The range in this case was to a maximum distance \((r_{\text{max}})\) of 8\(\sigma \). The first panel was sub-divided into 6 equal partitions, while the second was sub-divided into 5 partitions; in
both cases each partition was integrated over by a 3 point Gaussian quadrature.

In eq. (7), the lower limit of integration over \(r_{13} \) depends on \(r_{12} \), whereas the limits over \(r_{23} \) depend on both \(r_{13} \) and \(r_{12} \). Integration over \(r_{13} \) and \(r_{23} \) were performed such that if the panel lay in the range \((0, 2\sigma) \), it was divided into \(N_1 \) equal partitions such that \(2\sigma/N_1 \approx \sigma/3 \). Conversely, when the panel lay in the range \((2\sigma, r_{\text{max}}) \), it was divided into \(N_2 \) partitions such that \((r_{\text{max}} - 2\sigma)/N_2 \approx \sigma \). Each partition was then integrated over by a three-point Gaussian quadrature.

For both \(B \) and \(C \), angle integration over \(\cos \theta \) was performed with the interval \((0, \pi/2) \) divided into two equal partitions; each partition being integrated over by a three-point Gaussian quadrature. The reduction in the range of integration was possible because of the symmetry in \(\cos \theta \). Similarly, for integration over \(\phi_i \) and \(\phi_j \), use was made of the symmetry about \(\pi \) and the interval \((0, \pi) \) was divided into four equal partitions; thereafter, each partition was integrated over with a three-point Gaussian quadrature.

The first two temperature derivatives of \(B \) and \(C \) were calculated by quadrature, as the virial coefficients themselves (Monago, 2013). Second, \(\beta \), and third, \(\gamma \), acoustic virial coefficients were calculated from \(B, C, B^{(1)}, \) and \(C^{(2)} \), as shown below in Eq. (8) and (9).

\[
\beta = 2B + 2\left(\nu_{pg} - 1\right)TB^{(1)} + \frac{[T(\nu_{pg} - 1)]^2 B^{(2)}}{\nu_{pg}}. \tag{8}
\]

\[
\gamma = \frac{\nu_{pg} - 1}{\nu_{pg}} [B + (2\nu_{pg} - 1)TB^{(1)} + (\nu_{pg} - 1)T^2 B^{(2)}]^2 + \\
2(2\nu_{pg} + 1)C + 2(\nu_{pg} - 1)T C^{(1)} + (\nu_{pg} - 1)^2 T^2 C^{(2)} \tag{9}
\]

Where, in Eq. (8) and (9), \(B^{(1)} \) and \(B^{(2)} \) are, respectively, the first and second temperature derivatives of \(B \); \(C^{(1)} \) and \(C^{(2)} \) are similarly defined. Also, \(\nu_{pg} = C_p \sigma / C_v \sigma \), is the ratio of the two heat capacity functions of ethane in the perfect-gas state. In the case of \(B \) and its derivatives, all first-order quantum corrections, including the coriolis term, were included in the calculations (Pack, 1983). Quantum corrections to \(B \) were implemented as follows:

\[
B_{t1} = \frac{N_A}{96(kT)^3} \int_0^\infty \int_0^\infty e(r) \left(\frac{\partial \theta}{\partial r_{12}} \right)^2 r_{12}^2 d\Omega dr_{12}
\]

\[
B_{r1} = \frac{N_A}{96(kT)^3} \int_0^\infty \int_0^\infty e(r) \left\{ \left(\frac{\partial \theta}{\partial \theta_1} \right)^2 + \left(\frac{\partial \theta}{\partial \theta_2} \right)^2 \right\} + \left(\frac{\partial \phi}{\partial \phi_1} \right)^2 + \left(\frac{\partial \phi}{\partial \phi_2} \right)^2 \right\} r_{12}^2 d\Omega dr_{12}
\]

\[
B = B_{\text{class}} = \frac{\hbar^2}{\mu} B_{t1} + \frac{\hbar^2}{I} B_{r1} + \frac{\hbar^2}{\mu} B_c \tag{10}
\]

In Eq. (10), \(B_{\text{class}} \) is the classical ordinary second virial coefficient, Eq. (1); \(\mu \) is the reduced mass and \(\hbar \) is the moment of inertia of the molecule. The coefficients \(B_{t1}, B_{r1} \) and \(B_c \) determine, respectively, the first-order translational, rotational and coriolis contributions to the quantum corrections. For a system composed of identical molecules, the coefficients are defined as follows:

\[
B_{t1} = \frac{N_A}{96(kT)^3} \int_0^\infty \int_0^\infty e(r) \left(\frac{\partial \theta}{\partial r_{12}} \right)^2 r_{12}^2 d\Omega dr_{12}
\]

\[
B_{r1} = \frac{N_A}{96(kT)^3} \int_0^\infty \int_0^\infty e(r) \left\{ \left(\frac{\partial \theta}{\partial \theta_1} \right)^2 + \left(\frac{\partial \theta}{\partial \theta_2} \right)^2 \right\} + \left(\frac{\partial \phi}{\partial \phi_1} \right)^2 + \left(\frac{\partial \phi}{\partial \phi_2} \right)^2 \right\} r_{12}^2 d\Omega dr_{12}
\]

41
In order to estimate the computational imprecision in \(C \), the total number of partitions and the range of integration, \(r_{\text{max}} \), were varied independently; as a result, it was estimated that at 200 K, the numerical uncertainty was between 3 – 5 percent, however, this declined to about 1 percent at 400 K.

4. POTENTIAL PARAMETERS

The Maitland-Smith pair potential function has four parameters \((\varepsilon/k, r_m, m, \kappa)\) and the values for ethane were determined in a fit to the experimental second acoustic virial coefficients of Estrada-Alexander; no other data were used in the fit. The parameters were determined by solving the nonlinear least-squares problem:

\[
\chi^2 = \mathbf{R}^T \mathbf{R} \quad (11)
\]

Where,

\[
R_i (\mathbf{X}) = (\beta_{i,\text{cal}} - \beta_{i,\text{expt}}) / \sigma_i \sqrt{N - N_p}
\]

Here, \(\mathbf{x} \) is the parameter vector, \(\beta_{i,\text{expt}} \) is the value of the \(i \)-th experimental second acoustic virial coefficient, \(\beta_{i,\text{cal}} \) is the corresponding value of the calculated second acoustic virial coefficient, \(N \) is the number of second acoustic virial coefficient data, \(N_p \) is the total number of adjustable parameters and \(\sigma_i \) is the estimated standard deviation of \(\beta_{i,\text{expt}} \). The following values minimized Eq. (11): \(\varepsilon/k = 592.453 \text{ K} \), \(r_m = 0.406519 \text{ nm} \), \(m = 16.785 \), \(\kappa = 12.0 \).

Third virial coefficient data were not employed in the parameter optimization because of the excessive amount of computation that would have been required. Instead the value for the three-body strength coefficient of Eq. (6) was set equal to the value obtained in (Monago, 2010); namely, \(\delta_{123}/k = 0.013901 \text{ K nm}^9 \). Also, the quadrupole moment of ethane was assigned a value of \((\Theta/\sqrt{k}) = 0.323 \text{ (K nm}^5)^{1/2} \) (Ameling et al., 1986) and the distance between the sites was set equal to the C—C bond length in ethane (0.1534 nm).

5. RESULTS AND DISCUSSION

Tables 1 and 2 contain the Second and third volumetric virial and acoustic virial coefficients of ethane respectively.
Table 1. Second and third volumetric virial coefficients of ethane

<table>
<thead>
<tr>
<th>T/K</th>
<th>B/cm^3/mol</th>
<th>C/cm^6/mol^2</th>
<th>T/K</th>
<th>B/cm^3/mol</th>
<th>C/cm^6/mol^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>-420.28</td>
<td>-14617</td>
<td>205</td>
<td>-176.11</td>
<td>10093</td>
</tr>
<tr>
<td>210</td>
<td>-379.47</td>
<td>4137</td>
<td>307</td>
<td>-173.7</td>
<td>10031</td>
</tr>
<tr>
<td>220</td>
<td>-344.73</td>
<td>2239</td>
<td>309</td>
<td>-171.34</td>
<td>9968</td>
</tr>
<tr>
<td>235</td>
<td>-301.11</td>
<td>7400</td>
<td>313</td>
<td>-166.74</td>
<td>9837</td>
</tr>
<tr>
<td>240</td>
<td>-288.43</td>
<td>8393</td>
<td>315</td>
<td>-164.5</td>
<td>9770</td>
</tr>
<tr>
<td>250</td>
<td>-288.50</td>
<td>9694</td>
<td>318</td>
<td>-161.21</td>
<td>9669</td>
</tr>
<tr>
<td>260</td>
<td>-244.94</td>
<td>10364</td>
<td>325</td>
<td>-153.87</td>
<td>9428</td>
</tr>
<tr>
<td>265</td>
<td>-235.58</td>
<td>10537</td>
<td>330</td>
<td>-148.89</td>
<td>9254</td>
</tr>
<tr>
<td>275</td>
<td>-218.35</td>
<td>10661</td>
<td>340</td>
<td>-139.52</td>
<td>8908</td>
</tr>
<tr>
<td>280</td>
<td>-210.40</td>
<td>10641</td>
<td>345</td>
<td>-135.1</td>
<td>8738</td>
</tr>
<tr>
<td>285</td>
<td>-202.85</td>
<td>10581</td>
<td>365</td>
<td>-119.06</td>
<td>8087</td>
</tr>
<tr>
<td>290</td>
<td>-195.72</td>
<td>10490</td>
<td>385</td>
<td>-105.19</td>
<td>7500</td>
</tr>
<tr>
<td>295</td>
<td>-188.83</td>
<td>10375</td>
<td>415</td>
<td>-87.59</td>
<td>6746</td>
</tr>
<tr>
<td>298</td>
<td>-184.89</td>
<td>10296</td>
<td>450</td>
<td>-70.8</td>
<td>6044</td>
</tr>
<tr>
<td>300.65</td>
<td>-181.50</td>
<td>10222</td>
<td>500</td>
<td>-51.83</td>
<td>5301</td>
</tr>
<tr>
<td>304</td>
<td>-177.33</td>
<td>10124</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Second and third acoustic virial coefficients of ethane.

<table>
<thead>
<tr>
<th>T/K</th>
<th>β/cm^3/mol</th>
<th>γ/cm^6/mol^2</th>
<th>T/K</th>
<th>β/cm^3/mol</th>
<th>γ/cm^6/mol^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>-501.98</td>
<td>26295</td>
<td>207</td>
<td>-242.02</td>
<td>27764</td>
</tr>
<tr>
<td>220</td>
<td>-459.19</td>
<td>30850</td>
<td>309</td>
<td>-238.88</td>
<td>27543</td>
</tr>
<tr>
<td>235</td>
<td>-405.09</td>
<td>33465</td>
<td>313</td>
<td>-232.76</td>
<td>27101</td>
</tr>
<tr>
<td>240</td>
<td>-389.24</td>
<td>33676</td>
<td>315</td>
<td>-229.77</td>
<td>26822</td>
</tr>
<tr>
<td>250</td>
<td>-360.26</td>
<td>33516</td>
<td>318</td>
<td>-225.38</td>
<td>26560</td>
</tr>
<tr>
<td>260</td>
<td>-334.37</td>
<td>32861</td>
<td>325</td>
<td>-215.51</td>
<td>25825</td>
</tr>
<tr>
<td>265</td>
<td>-322.44</td>
<td>32418</td>
<td>330</td>
<td>-208.77</td>
<td>25315</td>
</tr>
<tr>
<td>275</td>
<td>-300.33</td>
<td>31398</td>
<td>332</td>
<td>-206.15</td>
<td>25114</td>
</tr>
<tr>
<td>280</td>
<td>-290.06</td>
<td>30847</td>
<td>340</td>
<td>-196.02</td>
<td>24341</td>
</tr>
<tr>
<td>285</td>
<td>-280.27</td>
<td>30280</td>
<td>345</td>
<td>-189.97</td>
<td>23877</td>
</tr>
<tr>
<td>290</td>
<td>-270.91</td>
<td>29706</td>
<td>365</td>
<td>-167.73</td>
<td>21523</td>
</tr>
<tr>
<td>295</td>
<td>-261.97</td>
<td>29131</td>
<td>385</td>
<td>-148.16</td>
<td>20672</td>
</tr>
<tr>
<td>298</td>
<td>-256.79</td>
<td>28784</td>
<td>415</td>
<td>-122.81</td>
<td>18800</td>
</tr>
<tr>
<td>300.65</td>
<td>-252.32</td>
<td>28481</td>
<td>450</td>
<td>-97.98</td>
<td>17077</td>
</tr>
<tr>
<td>304</td>
<td>-246.82</td>
<td>28103</td>
<td>500</td>
<td>-69.14</td>
<td>15252</td>
</tr>
<tr>
<td>305</td>
<td>-245.2</td>
<td>27988</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1 compares experimental second volumetric virial coefficients with values determined in this work and it is clear that all the data lie within a band with an absolute deviation of 0.5 cm^3 mol^{-1}.
Figure 1. Deviations $\Delta B = B_{\text{expt}} - B_{\text{cal}}$ in experimental second volumetric virial coefficients of ethane from values calculated with the site-site model: ◊ ref. 16, ▲ ref. 17, ■ ref. 18.

In Figure 2, experimental second acoustic virial coefficients are compared with values determined with the present model; here, we also find that most of the data lie within a band corresponding to an absolute deviation of 0.5 cm3.

Figure 2. Deviations $\Delta \beta = \beta_{\text{expt}} - \beta_{\text{cal}}$ in experimental second acoustic virial coefficients of ethane from values calculated with the site-site model: □ ref. 5; ● ref. 19.

Figure 3 is a deviation plot of experimental third volumetric virial coefficients of ethane from calculated values, from which it is seen that most of the data lie within an absolute deviation of 250 cm6 mol$^{-2}$.
Figure 3. Deviations $\Delta C = C_{\text{expt}} - C_{\text{cal}}$ in experimental third volumetric virial coefficients of ethane from values calculated from the site-site model: ▲ ref. 16, ■ ref. 17, ● ref. 18.

In Figure 4 we display values of third volumetric virial coefficients of ethane as a function of temperature.

Figure 4. Third volumetric virial coefficient of ethane as a function of temperature: ● ref. 16, ■ ref. 17, ▲ ref. 18, o&———, this work.

Figure 5 is a plot of third acoustic virial coefficients of ethane into which the experimental data of Estrada-Alexanders (1996) and those of Boyes (1992) have been inserted. The agreement in this case is not as good as was the case with the volumetric analogue; this is particularly so below a temperature of 265 K for the data of Estrada-Alexanders and below 230 K for the data of Boyes.
6. CONCLUSION

Calculation of third virial coefficients of linear molecules with a site-site pair potential is computationally demanding; particularly if one should desire to fit potential parameters to experimental data. In this paper site-site two-body potential parameters were determined in a fit to second acoustic virial coefficients alone, while the three-body strength coefficient was determined in a fit to acoustic data using isotropic two-body and three-body potential models. It is shown that when the site-site potential is combined with the Axilrod-Teller triple-dipole term, the procedure predicted second and third volumetric virial coefficients that are in agreement with the most precise experimental data available. The calculations in this paper lend support to the fact that available experimental third acoustic virial coefficients of ethane might be inconsistent with the volumetric counterpart at temperatures below 240 K.

REFERENCES

